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Mimics and Muscles

. . ge . » Compare with existing reconstruction methods for FLAME" and BFM®:
We want to learn the non-linear bidirectional correspondence

DECA’, EMOCAE, SMIRK®, Deep3DFace™®, FOCUS', and MC-CycleGAN'2 [l
netween facial movements and muscle activity for - Pixel-perfect ground truth does not exists for reconstruction evaluation
more natural expression synthesis and camera-based muscle analysis + Hence, we compute upper (Normal-Normal) and lower (Normal-Sensor)
performance bounds to evaluate the performance 3
l » Qualitative Evaluation £
Therefore, we record both = Faithful geometry: consistent identity and expression intensity :
muscle activity and facial movement simultaneously! - Crucial for learning muscle activity and expression correspondence £

= Realistic appearance: neural generators create photorealistic faces

l

Expressions Captured Data Muscle Activity

* Quantitative Evaluation

= Matches and exceeds on photometric reconstruction metrics

= Adversarial methods yield high FID due to powerful neural generators
L Synthesis A = Robust reconstruction possible with only 1% of input pixel
= Performance similar to MC-CycleGAN but with face representation
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Input

Synchronous Inaccurate Facial Geometry Unpaired Decoupled Geometry and Apperance
sEMG and Expression and Visual Apperance Reference Image Improved With Unpaired Translation EMG2Exp and Exp2EMG

DECAF

Method SSIM (4) GMSD (}) PSNR (1) MDSI (}) FID (1) &

PY Py I Basel?ne N-N 0.86+0.07  0.12+0.04 27.95+3.71  0.34+0.04 7.41+ 3.72 :

M“SCIes Flre Faces Express — Two Sldes of One Event Baseline N-S 0.3940.05 0.33+0.01 13.69+1.27  0.62+0.02 | 285.42+38.18 3:§
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Yet muscle activity electrodes conceal the expressions we aim to capture Do | Hh Bon W jn | e |

([ FOCUS 0.46+0.05 0.3240.02 13.95+£1.35  0.5840.03 | 227.71+50.21 =

By e | R Y W X MC-CycleGANT | 0.66+0.08 0.244+0.03 19.38+2.39 0.4540.02 | 54.39+24.32 %
g e e wressions briwemimaseelill O\ Can we bridge the gap between Mimics and Muscles for 3D reconstruction, synthesis, and analysis?

........................................................................... O Phase 1: Reconstruction Under Occlusion (CycleGAN-Inspired)
"""""""""""""""""""""" : » Framework: Dual encoder-generator architecture (plaCing and removing of e|€CTrOdeS)

------------------------------------------------------------

S ............................. i i * Input: Occluded SEMG image + unpaired clean reference image
1 =0\ . : = =)\ . | » Encoder (E, + E,): SMIRK®*-based encoder architecture, estimate FLAME® parameters * Accurately Predicts Muscle Dynamics from Expressions e ‘
°ll 9@ % o g @ g . . . , , , . . . 2 M. zygomaticus [EIFER]
Synchronized MuIti-ModaI Face Data EY ol 2] 8 E AR ek » Generator (G, _ .+ G__,): Combines rendered geometry with sparse color pixels (via masking) for Camera-based electrode-free SEMG analysis by capturing dynamic, 3| |sesx
=) /5 £ g /- photorealistic face generation as neural renderer temporal muscle patterns and active/inactive muscle states £ 1 [t
* Multi-channel muscle activity with two SEMG schemes - + Multi-Stage Training (Simplify Convergence): * Faithfully Synthesizes Expressions from Muscle Signals D] et @
~ - - - ' a ' ner realisti mplex facial movements from SEMG 6 ‘ — Recorded - EM o
- Frontal video for expression with Intel RealSense camera Fectode NS Fectode Generators Learn Electrode Locations | oenerates realistic, complex facia move ' N |
Application C’ DS _@ Removal ! i Focus on electrode app||cat|on/remo\/a| (Encoderg frozen, Generators get 50% p|xe|s) for phyS|o|oglca| animation & lifelike d|g|ta| avatars 2y E&S”Ep%ggm +++ Predicted - SMIRK [On Restored] || G
RlCh In Va"e':y ; R - S | = Encoder Adapts to Occlusion * Unlocks Novel Physiological Insights & Applications ;“2_
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36 + 1 20 + 1 | h |th t - t d d = ......0cusion ShapeLoss Adapt sensor encoder (ES) on occluded faces (1 0% plxels), clean-side encoder (EN) as teacher Integrates real muscle data into 3DMMSs, advancmg the S’[udy of - : : : e ; -
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( QUD |C> caltny partcipants recorde = . N E@ — = Final Decoupling of Geometry and Appearance expression-muscle links in health, disease, and digital humans Frames [#]
171 functional ('nc ividual) movements Removal C Application ! Force reliance on rendered geometry using 1% of appearance pixels —
- i » Training Principles: y - -
° | . . . . T W
bx4 emotional (Complex) movements e ~——| e = Cycle Consistency' ", Adversarial Training™, and Minimal Change Loss'
 SEMG electrode free reference 'ecordmgs Y ) IRy GS-N B el £/ 5[5 L) & » Occlusion-Robust Regularizations (Occlusion Expression/Shape Loss, Global Transform Loss) %
- " 121 &] /2 5 Fl W ensuring consistent face geometr & =
- Recording repeated after two weeks : _~ - J JEOMELY g
A Uniaue Resource r [Ph ) 2] Phase 2: Physiological Mappings - »
daSe L. . . . . . L
q P MLP o EM|G2E|XB|2 . o EXFI>2E|\|/|E? | « EMG2Exp: Synthesizes 3DMM expressions from SEMG signals (camera-free animations) o
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* Fir for -driven muscle-expression-link - - . - . . : :
st dataset fo Qata driven muscle-expressio | g - VARV —— Expression Synthesis Expression Viuscle aciviy]  Expression Analysis Exp2EMG: Predicts SEMG from.3D|\/|l\/| expressions (facial electromyography). MG Heatmop DECA  EMOCA? SMIRK DesnaoFoce FOCUS | DECA EMOCAY2 SMIRK DecpabFace FOCUS
» Many Tasks Await! Improve & Explore! https://eifer-mam.github.io » Monocular 3D face reconstruction methods are now usable the restored face images Recorded Expression (on SEMG-occluded Videos) (on MC-CycleGAN Restored Videos)
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