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 Reconstruction Loss

Occlusion Expression Loss

Global Transformation Loss

Occlusion Shape Loss

Minimal Change Loss

EMG2Exp
Physioglogical-Based
Expression Synthesis
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Mimics and Muscles Reconstruction

Muscles Fire, Faces Express – Two Sides of One Event!
Yet muscle activity electrodes conceal the expressions we aim to capture.

How can we bridge the gap between Mimics and Muscles for 3D reconstruction, synthesis, and analysis?

Synchronized Multi-Modal Face Data 
� Multi-channel muscle activity with two sEMG schemes

� Frontal video for expression with Intel RealSense camera

Rich in Variety
� 36 + 1 (20 + 1 public) healthy participants recorded

� 11 functional (individual) movements  

� 6x4 emotional (complex) movements

� sEMG electrode free reference recordings 

� Recording repeated after two weeks

A Unique Resource
� First dataset for data-driven muscle-expression-link

�Many Tasks Await! Improve & Explore!

A Novel Dataset
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Phase 1: Reconstruction Under Occlusion (CycleGAN-Inspired)
� Framework: Dual encoder-generator architecture (placing and removing of electrodes)

� Input: Occluded sEMG image + unpaired clean reference image

� Encoder (E
N
 + E

S
): SMIRK9-based encoder architecture, estimate FLAME6 parameters

� Generator (G
N→S 

+ G
S→N

): Combines rendered geometry with sparse color pixels (via masking) for 
photorealistic face generation as neural renderer

� Multi-Stage Training (Simplify Convergence):
▪ Generators Learn Electrode Locations

Focus on electrode application/removal (Encoders frozen, Generators get 50% pixels)
▪ Encoder Adapts to Occlusion

Adapt sensor encoder (E
S
) on occluded faces (10% pixels), clean-side encoder (E

N
) as teacher

▪ Final Decoupling of Geometry and Appearance
Force reliance on rendered geometry using 1% of appearance pixels

� Training Principles: 
▪ Cycle Consistency11,14, Adversarial Training15, and Minimal Change Loss12

▪ Occlusion-Robust Regularizations (Occlusion Expression/Shape Loss, Global Transform Loss) 
ensuring consistent face geometry

Phase 2: Physiological Mappings
� EMG2Exp: Synthesizes 3DMM expressions from sEMG signals (camera-free animations)

� Exp2EMG: Predicts sEMG from 3DMM expressions (facial electromyography)

� Monocular 3D face reconstruction methods are now usable the restored face images

� Compare with existing reconstruction methods for FLAMEF and BFMB:
DECA7, EMOCA8, SMIRK9, Deep3DFace10, FOCUS11, and MC-CycleGAN12,13

� Pixel-perfect ground truth does not exists for reconstruction evaluation

� Hence, we compute upper (Normal-Normal) and lower (Normal-Sensor) 
performance bounds to evaluate the performance

� Qualitative Evaluation

▪ Faithful geometry: consistent identity and expression intensity
→ Crucial for learning muscle activity and expression correspondence

▪ Realistic appearance: neural generators create photorealistic faces

� Quantitative Evaluation

▪Matches and exceeds on photometric reconstruction metrics

▪ Adversarial methods yield high FID due to powerful neural generators

▪ Robust reconstruction possible with only 1% of input pixel

▪ Performance similar to MC-CycleGAN but with face representation
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Therefore, we record both
muscle activity and facial movement simultaneously!

Disentangled FLAME expressions
of the recorded facial movements

Corresponding muscle activities
of the recorded facial movements

https://eifer-mam.github.io

How to isolate expressions 
under sEMG occlusion?

We want to learn the non-linear bidirectional correspondence
between facial movements and muscle activity for

more natural expression synthesis and camera-based muscle analysis

How to use the muscle
correspondence?

Captured Data Muscle ActivityExpressions

Synthesis and Analysis
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� Accurately Predicts Muscle Dynamics from Expressions
Camera-based electrode-free sEMG analysis by capturing dynamic, 
temporal muscle patterns and active/inactive muscle states

� Faithfully Synthesizes Expressions from Muscle Signals
Generates realistic, complex facial movements from sEMG,
for physiological animation & lifelike digital avatars

� Unlocks Novel Physiological Insights & Applications
Integrates real muscle data into 3DMMs, advancing the study of 
expression-muscle links in health, disease, and digital humans
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Method SSIM (↑) GMSD (↓) PSNR (↑) MDSI (↓) FID (↓)

Baseline N-N 0.86±0.07 0.12±0.04 27.95±3.71 0.34±0.04 7.41± 3.72

Baseline N-S 0.39±0.05 0.33±0.01 13.69±1.27 0.62±0.02 285.42±38.18

DECAF 0.53±0.04 0.29±0.01 12.43±0.65 0.46±0.01 165.24±31.80

SMIRKF 0.47±0.06 0.31±0.02 14.45±1.41 0.58±0.02 275.80±46.38

Deep3DFaceB 0.48±0.05 0.31±0.01 14.42±1.39 0.58±0.03 219.28±43.29

FOCUSB 0.46±0.05 0.32±0.02 13.95±1.35 0.58±0.03 227.71±50.21

MC-CycleGAN†
0.66±0.08 0.24±0.03 19.38±2.39 0.45±0.02 54.39±24.32

EIFERF
0.66±0.09 0.24±0.03 19.42±2.57 0.44±0.03 52.56±27.75


